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ABSTRACT

In this paper, we describe a real-time speech-to-text (STT) system for
Meeting Room (MR) recognition developed at Panasonic. The system
is an evolution of Panasonic’s Broadcast News (BN) STT system that
was evaluated at the NIST Rich Transcription (RT) 03S event. Newest
features of interest include syllable models and merged Multiple Het-
eroscedastic Linear Discriminant Analysis (MHLDA) feature transfor-
mations. Also, we will present some experience that we have acquired
in working with Meeting Room data.

1. INTRODUCTION

The Meeting Room (MR) domain has received a lot of attention from
corporate and governmental funding lately. Products and applications
are easy to imagine for a reasonably accurate technology. From the
scientific point of view, it offers many new compelling challenges to
solve. It is still in its infancy; departure from standard scoring and
decoding architectures is being seriously considered.

At Panasonic, we have decided to evaluate the difficulty of the task
from the Broadcast News point of view. This paper will present the
snapshot of our BN-STT system that was adapted to MR. Firstly, we
will describe two features that were added since the last NIST STT
evaluation. The first was motivated by the sudden surge in amount
of available data for training. We have upgraded to larger syllabic
models from triphonic models. The second feature is our extension of
MHLDA modelling. Secondly, we will expose our practical findings
concerning MR data.

2. NEW ACOUSTIC MODELLING FEATURES

The two main acoustic modelling features that were introduced lately
in our STT system were syllable models and merged MHLDA models.

2.1. Syllable models

We believe that the increase in amount of training data has propelled
larger units modeling, and in particular syllable models, to the list of
interesting features to try. Furthermore, it is argued that syllable units
are intrinsically more robust to variations in pronunciations. This is
particularly useful when dealing with spontaneous speech. One draw-
back is that syllable units are not language independent: applicability
and performance might vary across languages. This dependence is ex-
pected to disappear when we move to word models as more data are
introduced.
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2.1.1. Syllabification

Our initial lexicon was designed for careful speech. It contains all
schwas. That minimizes the amount of ambiguous syllabification. All
syllables will also contain at least one vowel. For instance, the word
little is phoneticized as l ih t ax l, as subsequently syllabi-
fied as {l ih} {t ax l}. The NIST tool tsyl was used [1].

We introduce a new piece of information that is not fully covered
by the syllable literature: as with allophones, the position of the sylla-
ble in the word is of utmost importance. In our example, the second
syllable is t ax l , the same as in battle but not the middle of
natalya. Since many words are monosyllablic, this is also approx-
imately equivalent to word modeling. When introducing context, we
take into account the neighboring phone. It was more manageable than
using syllable context. Another possibility would be nucleus context.

Following the work of [2], when a syllable is not in our list, we use
phoneme models. For simplicity, we use CI phone models. Context-
dependent model should perform better, however, as we will see, since
we have good coverage, the back-off strategy is only of negligible im-
portance.

Our state-based syllable lexical tree is about twice the size of the
state-based triphonic lexical tree. It is crucial to have a state-based
architecture as opposed to a model-based lexical tree.

2.1.2. More data

There has been many successful attempts at using syllable units in
spontaneous and non-spontaneous speech. In the current literature
(e.g. [3, 2, 4]), the most cited limit for performance was lack of training
data and coverage of syllables. In 2003, we happened to have intro-
duced the largest acoustic training database to have ever been used in
a NIST evaluation [5]. It is appropriate for prototyping syllable exper-
iments. We study the coverage of syllables in this corpus.

Unlike some other languages, in the English language there is vir-
tually no hard limit on the number of distinct syllables. It is expected
that no more than 20k syllables should be enough to cover the entire
dictionary. By construction, we have only in-vocabulary items in the
training words. Therefore, there is a hard limit defined by the lexicon
of 64k words that was used for decoding the training set. There are
about 15k such syllables in the lexicon. Almost all of those were seen
at least once in the training set.

The training data included instances of about 15M syllables. If we
select the top N syllables by frequency of occurrence in the training
data, we can measure the coverage in Table 1. There are columns for
context independent (CI-syl), position dependent (POS-syl), and word
internal context position dependent (POS-CD-syl) syllable units. In
our approach, there is little theoretical reason for choosing a low count
of syllables because the system size will be reduced by entropy after-



wards. However, practical constraints put a cap on the trainability of
the system. There are about 3.33 phones per position dependent sylla-
ble on average. The untied 6k syllable system has about 60000 states.
We found this to be reasonable and marginally inferior to the 10k sys-
tem. Comparing with [2], we can now see the leverage in amount of
data: there is no longer a need to be careful about hybridation, be-
cause our coverage is so large that backed off non syllabic units do not
matter. This is quite unlike [2] and [4], where lack of data forces a
careful tuning of hybridation. We will observe that the difference in
performance between CI-syl and POS-syl is compelling. However, the
POS-CD syl system is only marginally better than the POS-syl. From
the table we can already see that the POS-CD syl system will be more
complex w.r.t. the POS-syl, than the POS-syl is to the CI-syl.

# of syllables CI-syl POS-syl POS-CD syl
10k 99.7% 99.5% 94.7%
6k 99.7% 98.5% 90.7%
3k 98.2% 95.0% 82.2%
2k 95.9% 91.1% 76.0%
1.5k 93.4% 87.6% 71.3%
1k 88.7% 81.6% 64.6%

Table 1. Coverage of the training data w.r.t. the most frequent sylla-
bles.

In Table 2, we show the number of examples for the N th POS-syl.

N # of instances
10k 1
6k 14
3k 127

Table 2. Number of times the N th pos-syllable is seen.

2.1.3. Training procedure

We found out that the following training / initialization works best in
practice. The training procedure is shown on Figure 1. In particu-
lar, following [3], we have also observed that seeding with CD-phone
models worked best. The syllable training procedure is almost iden-
tical to the CD-phone initialization procedure off CI-phones, except
that entropy merging replaces decision tree splitting. The final system
has 6000 POS-syl and 3000 states. In separate experiments, we found

State−tied POS−syl

CI phones

Untied CD phones

ML−CART

CD phones

Untied POS−syl

Fig. 1. Training syllables from bootstrap CD phones

a small improvement by augmenting the syllables with a phone con-
text. The training procedure became more involved. For the sake of

simplicity and fast prototyping, we decided to use context-independent
syllables only. POS-CD syllables, however, always performed best in
our experiments.

2.2. Merged MHLDA

Semi-tied models [6], and their mathematical extension, Multiple Het-
eroscedastic Linear Discriminant Analysis (MHLDA) [7, 8], have been
found to improve performance in the past. Here, we use MHLDA mod-
els. In some instances, especially with more data, we have found that
increasing the number of transformations can also increase the accu-
racy. As with the number of Gaussians, there is an optimal number
of transformations that most favorably balances model resolution and
trainability. Unlike merging Gaussians, however, merging transfor-
mations does not have a closed form solution. We see however that
there is an EM formulation that is trivially close to the STC [6] or
MLLU [9] framework. We show how to use an existing MLLU im-
plementation to estimate the best transformations. The extension to
MHLDA is straightforward.

2.2.1. Estimating the transformation

The log likelihood of independent frames ot with posterior γ(t) given
a Gaussian distribution N (µ, C):

Q = −
1

2

∑

t

γ(t)
{

D log 2π + log |C| + (µ− ot)
T
C

−1(µ− ot)
}

.

(1)
In the case of semi-tied transformations [8],N (Aµ, ACAT )

Q = −
1

2

∑

t

γ(t)

{

D log 2π + log |C|+ log |A|2+

(µ−Aot)
T
C

−1(µ−Aot)

}

.

Now imagine that ot are created by two STC Gaussians with param-
eters N (Amµm, AmCmAT

m) with m = 1, 2, with posteriors respec-
tively γm =

∑

t γm(t). Matrices Cm are diagonal. The expected
log-likelihood of the ot produced by Nm evaluated on themselves, is
the entropy:

Qm = −
1

2
γm

[

D(1 + log 2π) + log |Cm| + log |Am|
2]

. (2)

We would like to merge A1 and A2 into a single matrix A. The
new expected likelihood of ot produced by Nm and evaluated with
N (Aµ̃m, AC̃mAT ), are thus:

Q̃m = −
1

2

∑

t

γm(t)

[

D log 2π + log |C̃m| + log |A|2

+ (µ̃m −Aot)
T
C̃

−1
m (. − .)

]

.

Computing the expectation,
∑

t γm(t)·, results in:

Q̃m = −
1

2

[

D log 2π + log |C̃m| + log |A|2

+ (µ̃m −AA
−1
m µm)T

C̃
−1
m (.− .)

+ tr
{

CmA
−T
m A

T
C̃

−1
m AA

−1
m

}

]

The total likelihood is given by:

Q̃ = Q̃1 + Q̃2. (3)

There are three strategies:



1. optimize A with fixed µ̃m, C̃m and iterate,
2. optimize A with fixed C̃m and iterate, or
3. optimize A and µ̃m, C̃m jointly.

Let us concentrate on the third, most general case. Differentiating wrt
µ̃m and setting to zero is solved by:

µ̃m = AA
−1
m µm. (4)

Replacing back into Qm, we have:

Q̃m = −
1

2

[

D log 2π+log |C̃m|+log |A|2+tr
{

CmA
−T
m A

T
C̃

−1
m AA

−1
m

}

]

.

(5)
We can stop at that stage or proceed. Differentiating wrt to C̃m, and
setting to zero is solved by:

C̃m = diag
(

AA
−1
m CmA

−T
m A

T
)

. (6)

Define Mm = A−1
m CmA−T

m , and replacing into the expression of Q,
we get:

Q̃m = −
1

2
γm

[

log |A|2 + log |diag AMmA
T |
]

(7)

up to a constant since tr P diag (P )−1 = D. Adding both Qm and
differentiating wrt A gives:

∂Q̃

∂A
= −

1

2

[

2(γ1 + γ2)A
−T + γ1

{

diag(AM1A
T )
}

−1

M1A + ...

]

.

(8)
Even row-by-row, this is difficult to optimize (see MLLT [10]).

We chose to stop at step 2, and perform a two-step optimization:
1. Initialize: C̃m = Cm, A = I

2. Estimate U for A← UA (U is upper)
3. Estimate C̃m

4. Estimate L for A← LA, with L lower.
5. Check for convergence and go back to step 2 if required.
For upper triangular matrices (A)kj = akj , we have akj = 0 if

k > j. We go row by row. Let us fix a row d and drop the d index for
convenience. Define a = [ad,d+1, ad,d+2, ..., adN ]. We have:

∂Q̃

∂a
= − [(G1 + G2)a + addz] , (9)

and thus:
a = −add(G1 + G2)

−1
z, (10)

with Gm and z appropriately defined as:

(Gm)kj := γmr
(m)
d m

(m)
kj (11)

zj := γ1r
(1)
d m

(1)
dj + ... (12)

For the optimization of add,

∂Q̃

∂add

= −

[

γ1 + γ2

add

− f
T
a + ϕadd

]

(13)

with

fj := γ1r
(1)
d mjd + ... (14)

ϕ := γ1r
(1)
d mdd + ... (15)

and therefore f = z. Continuing the derivation by replacing a with its
value

∂Q̃

∂add

= −
1

add

[

γ1 + γ2 +
(

ϕ− f
T (G1 + G2)

−1
z
)

a
2
dd

]

, (16)

and thus:

add =

√

γ1 + γ2

ϕ− fT (G1 + G2)−1z
(17)

2.2.2. Implementation using MLLU

Alternatively it is more convenient to use an existing MLLU imple-
mentation, which would collect, per class, and per dimension,

γ =
∑

m

γm ∈ R (one for all dimensions),

ϕ =
∑

m

γmr
(m)
d mdd ∈ R,

z =
∑

m

γmr
(m)
d mdj ∈ R

N−d
,

G =
∑

m

Gm ∈ R
(N−d)×(N−d)

.

In the original MLLU paper [9], this means:

z
′ := 0,

y
′ := z,

M
′ := G,

α
′ = ϕ− z

T
Gz,

β
′ = 0,

η = α
−1

γ

As usual, the combination of those sufficient statistics is done
through canonical addition. We have the memory since it is never
more than what was used during MLLU training.

2.2.3. Evaluating the likelihood

We have found a solution for estimating the locally optimal solution
to merge two transformations. Over all possible merges, we have to
find the one that results in the least loss in likelihood. It is not realistic
to store all of the optimal merge matrices for each pair. Therefore, the
evaluation of the likelihood must be performed quickly. The evaluation
of the likelihood is given by (eq. 5). If we go half a step further in EM
and update the covariance, then we can evaluate with (eq. 7). This
is inconvenient, however, since Mm matrices are required for every
Gaussian. To simplify, we use the Hadamard inequality, which allows
us to compare diagonal covariance C̃m with full-covariance C̃m as the
upper bound,

Q̃ = −
1

2

∑

m

γm

[

log |A|2 + log |diag AMmA
T |
]

≥ −
1

2

∑

m

γm

[

log |A|2 + log |AMmA
T |
]

= −
1

2

∑

m

γm

[

2 log |A|2 + log |Mm|
]

= −
1

2

∑

m

γm

[

2 log |A|2 − log |Am|
2 + log |Cm|

]

,

which we should compare against the original untied likelihood:

Q = −
1

2

∑

m

γm

[

log |Am|
2 + log |Cm|

]

. (18)

We therefore seek to maximize an upper bound for the likelihood
change. The EM algorithm gives us a lower bound. The likelihood
change is bounded by

∆Q ≥ −
∑

m

γm log
|A|2

|Am|2
, (19)



which is strikingly similar to the Gaussian merging (Fisher) ratios. In
practice we use this bound and a single iteration of upper triangular
MLLU. We found no significant difference with the full method with
exact likelihood computation and fully iterated MLLU matrices.

2.2.4. Algorithm

To summarize, our merging algorithm is as follows:

1. For all transformation, re-create MLLU accumulators by either
running a Baum-Welch or using Section 2.2.2.

2. For all classes c, compute
∑

m
γm|Ac| where m is a Gaussian

assigned to class c.

3. For all pairs of matrices, evaluate all distance pairs by:

(a) Adding both MLLU accumulators obtained in step 1 by
direct sum,

(b) Running the MLLU solver to obtain the putative merge
matrix A (only one iteration),

(c) Evaluating the merge likelihood loss using the approxi-
mate version of equation (19).

4. Take the pair with lowest associated likelihood loss and perform
the merge. Recompute matrix and distances w.r.t. all other ma-
trices.

5. Repeat last step until a number of transformations is met.

6. Compute merged transformations and new means.

3. MEETING ROOM DOMAIN

The Meeting Room domain offers many interesting problems. Speech
found in meeting room is spontaneous. It is much more natural and di-
rected than Switchboard speech. Moreover, the most compelling con-
dition involves recognizing speech from distant microphones. This has
long been considered an enormous challenge for speech recognition.
On the other hand, MR data is high bandwidth (16kHz or more) with
multiple micrphones.

3.1. Multiple microphones

3.1.1. Microphone combination

The evaluation plan states that the primary condition is the multiple
distant microphone condition. Also, the real-time factor is counted
with respect to the true duration of speech, that is, regardless of
how many input microphones are present. For simplicity, and to
avoid increasing the real-time factor, we have elected to use a sin-
gle stream architecture. Streams are combined at the feature level,
time-synchronously, before any further processing. The combination
is shown on the following figure.

Fig. 2. Combination of features by speech posterior

The features are combined linearly. We run a GMM scorer over
all channels in parallel. If there are C channels and assuming that

there is speech, each channel c has a speech log likelihood score of
log p(ot

c|s), where ot
c is the channel’s tth frame. We choose to “flatten”

the likelihood scores (e.g. [11]) and assign a channel weight p(s|c) as:

p(s|c) = exp

[(

log p(ot
c)− log

C
∑

k=1

p(ot
k|s)

)

η

]

, (20)

with η chosen to be arbitrarily 0.1.
This is a simple feature combination scheme which generalizes to

a Bayesian Network or an HLDA model. It was found to improve
accuracy between 0% WER to 2% WER versus choosing an arbitrary
distant microphone.

3.1.2. MDM vs IHM

The evaluation plan states that the primary condition should be Mul-
tiple Distant Microphones (MDM). In addition, it was required as a
contrast to run the same system on Individual Headmounted Micro-
phones (IHM). The objective is to measure the difference in difficulty
when distant microphones are used. The scoring, however, used a
speaker-attributed (SA-STT) philosophy that requires all words to be
channel-labelled, and counts errors when words are assigned to the
wrong channel. Therefore, a mis-assignment counts as an insertion
and a deletion. Since by design our system was geared towards the
MDM condition, after stream combination, it does not know what is
the source. To comply to the scoring, we added a multiplexer that se-
lected the most likely channel for each word in a 1 sec window about
its center. This was never tested experimentally. Combined with a
small η flattening value, and the MDM-only training, might explain
the exceedingly large error measured by NIST.

3.1.3. Multiple speakers

Since it is not part of the scoring, we have decided to ignore effects
of overlapping speech. The RT03 NIST scorer will remove entire ut-
terances with overlapping speech. This is rather conservative. There-
fore, there should not be any language model memory carried over to
non-overlapping speech. This is a serious issue that will have to be
addressed in the future.

3.2. Bootstrapping

Except for the high bandwidth, the Meeting Room does not have much
in common with Broadcast News speech. We did, however, achieve to
adapt to the MR data to a certain degree. We have found that our BN
system did show an 80% WER on MR without any tuning. This can
be reduced to a 72% WER with LM interpolation (using BN, SWB,
and MR), and vocabulary tuning. Further, with acoustic adaptation,
segmentation re-training, and some tuning, we obtain an approximate
60% WER.

3.3. MR statistics

We list a few statistics collected on the MR training data. The BN-64k
OOV is the out-of-vocabulary rate with respect to our Broadcast News
64k vocabulary. They are shown on Table 3.

4. CONCLUSION

In this paper, we have attempted to describe our Meeting Room rec-
ognizer. It is based on our Broadcast News real-time decoder. We
have described our newest features: firstly, a syllable unit, and sec-
ondly, merged MHLDA transformation. We have also described our
adaptation of the recognizer to meeting room condition.



Stat / Corpus ICSI ISL NIST
# meetings 75 19 19
# hours 72h 11h 13h
# words 622k 122k 121k
# distant mikes (avg) 4.6 1 (mix lapel) 2.8
# speakers 62 31 48
# Turns 83k 11.6k 14.8k
Turn length (words) 7.5 10.5 8.2
Turn duration 2.4s 3.2s 3.9s
BN-64k OOV 4.8% 3.4% 1.2%

Table 3. Statistics about the MR training data

Our one-pass real-time decoder scored at 60.58% WER in the MDM
condition and 146% WER in the IHM condition.
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